Key Notes

Chapter-07

Coordinate Geometry

- The length of a line segment joining A and B is the distance between two points

$$
\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \text { and }\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \text { is } \sqrt{\left\{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}\right\}}
$$

- The distance of a point (x, y) from the origin is $\sqrt{\left(x^{2}+y^{2}\right)}$. The distance of P from x-axis is y units and from y-axis is x-units.
- The co-ordinates of the points $p(x, y)$ which divides the line segment joining the points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ in the ratio $m_{1}: m_{2}$ are $\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)$ we can take ratio as $\mathrm{k}: 1, \mathrm{k}=\frac{\mathrm{m}}{\mathrm{m}_{2}}$
- The mid-points of the line segment joining the points $P\left(x_{1}, y_{2}\right)$ and $Q\left(x_{2}, y_{2}\right)$ is $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
- The area of the triangle formed by the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ is the numeric value of the expressions $\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+\left(y_{1}-y_{2}\right)\right]$.
- If three points are collinear then we cannot draw a triangle, so the area will be zero i.e.

$$
\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|=0
$$

- Centroid of a triangle and its coordinates: The medians of a triangle are concurrent. Their point of concurrence is called the centroid. It divides each median in the ratio 2:1. The coordinates of centroid of a triangle with vertices $\mathrm{A}\left(x_{1}, y_{1}\right)$, and $\mathrm{B}\left(x_{2}, y_{2}\right)$ and $\mathrm{C}\left(x_{3}, y_{3}\right)$ are given by $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$

