Chapter-07

Coordinate Geometry

• The length of a line segment joining A and B is the distance between two points

A (x_1, y_1) and (x_2, y_2) is $\sqrt{\{(x_2 - x_1)^2 + (y_2 - y_1)^2\}}$

- The distance of a point (x, y) from the origin is $\sqrt{(x^2 + y^2)}$. The distance of P from x-axis is y units and from y-axis is x-units.
- The co-ordinates of the points p (x, y) which divides the line segment joining the points
- A(x₁, y₁) and B(x₂, y₂) in the ratio $m_1 : m_2 \operatorname{are}\left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$ we can take ratio as $k : 1, \ k = \frac{m_1}{m_2}$
- The mid-points of the line segment joining the points $P(x_1, y_2)$ and $Q(x_2, y_2)$ is

$$\left(\frac{\mathbf{x}_1 + \mathbf{x}_2}{2}, \frac{\mathbf{y}_1 + \mathbf{y}_2}{2}\right)$$

- The area of the triangle formed by the points $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) is the numeric value of the expressions $\frac{1}{2}[x_1(y_2 y_3) + x_2(y_3 y_1) + (y_1 y_2)].$
- If three points are collinear then we cannot draw a triangle, so the area will be zero i.e.

$$|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)|=0$$

• **Centroid of a triangle and its coordinates:** The medians of a triangle are concurrent. Their point of concurrence is called the centroid. It divides each median in the ratio 2:1. The coordinates of centroid of a triangle with vertices $A(x_1, y_1)$, and $B(x_2, y_2)$ and $C(x_3, y_3)$ are

given by
$$\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$$